Comparing logistic regression, support vector machines, and permanental classification methods in predicting hypertension

نویسندگان

  • Hsin-Hsiung Huang
  • Tu Xu
  • Jie Yang
چکیده

In this paper, we compare logistic regression and 2 other classification methods in predicting hypertension given the genotype information. We use logistic regression analysis in the first step to detect significant single-nucleotide polymorphisms (SNPs). In the second step, we use the significant SNPs with logistic regression, support vector machines (SVMs), and a newly developed permanental classification method for prediction purposes. We also detect rare variants and investigate their impact on prediction. Our results show that SVMs and permanental classification both outperform logistic regression, and they are comparable in predicting hypertension status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward a Thorough Approach to Predicting Klinkenberg Permeability in a Tight Gas Reservoir: A Comparative Study

Klinkenberg permeability is an important parameter in tight gas reservoirs. There are conventional methods for determining it, but these methods depend on core permeability. Cores are few in number, but well logs are usually accessible for all wells and provide continuous information. In this regard, regression methods have been used to achieve reliable relations between log readings and Klinke...

متن کامل

Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data

Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene...

متن کامل

کاربرد الگوریتم‌های داده‌کاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد

Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...

متن کامل

Nonresponse prediction in an establishment survey using combination of statistical learning methods

Nonrespose is a source of error in the survey results and national statistical organizations are always looking for ways to control and reduce it. Predicting nonrespons sampling units in the survey before conducting the survey is one of the solutions that can help a lot in reducing and treating the survey nonresponse. Recent advances in technology and the facilitation of complex calculations...

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014